

Ch 3: Making the Connection

- The Basics of Networking
 - Societal changes driven by networked computers
 - Different communications technologies: synchronous vs. asynchronous, broadcast vs. point-to-point
 - Different protocols: Ethernet, TCP/IP, etc.
 - Internet addresses, domain names, DNS servers

Networks...

- Computers are useful alone, but are more useful when connected (networked)
 - Access more information and software than is stored locally
 - Help users to communicate, exchange information ... changing ideas about social interaction
 - Perform other services -- printing, Web,...

UC's networks move more than trillion bytes per day

Networked Computers Change Our Lives

- The Information Age has brought profound changes
 - Nowhere is remote
 - People are interconnected
 - Social relationships are changing
 - English is becoming a universal language
 - Freedom of speech and association have expanded

Nowhere Is Remote

- Internet is a complete information resource no matter where you are
 - Some differences remain because older sources are not yet all online
- Homes are not remote from work
 - Information workers can telecommute and live long distances from their offices

Social Interactions Are Changing

- Time spent online displaces other in-person social activities (*displacement effect*)
- The Internet is changing social interactions
- Spending too much time online could be bad
- The effects are being studied, but we don't yet fully understand them

English Is Becoming a Universal Language

- Influence of American pop culture since World War II
- Dominance of science and technology in English-speaking countries
- Much software is available only in English
- Most web pages are in English

Freedom of Speech and of Association Have Expanded

- Internet use is unmediated
 - Little editorial oversight or significant restrictions
- Allows for political and artistic expression
- Blogs record personal thoughts for public viewing
- Like-minded people can communicate, even on private topics

People Are More Interconnected

- Family and friends stay in closer, more frequent contact via Internet than via telephone or "snail mail"
- WWW lets us meet more people
 - People with similar interests find each other through search engines
 - Associations can form rapidly

Communication Types

- General Communication
 - Synchronous: sender and receiver are active at the same time: e.g. telephone call
 - Asynchronous: sending and receiving occur at different times: e.g. mail
 - Broadcast communication (or multicast): single sender and many receivers
 - Point-to-point communication: single sender and single receiver

Which of these does the internet use?

The Internet's Communication Properties

- Internet provides a general communication "fabric" linking all computers connected to it
 - The "fabric" can be used in many ways:
 - Point-to-point asynchronous
 - Email is alternative to standard mail
 - Point-to-point synchronous
 - IM, VoIP are alternatives to standard telephone
 - Multicasting
 - Chat rooms are alternatives to magazines
 - Broadcasting
 - Web pages are alternatives to radio and television

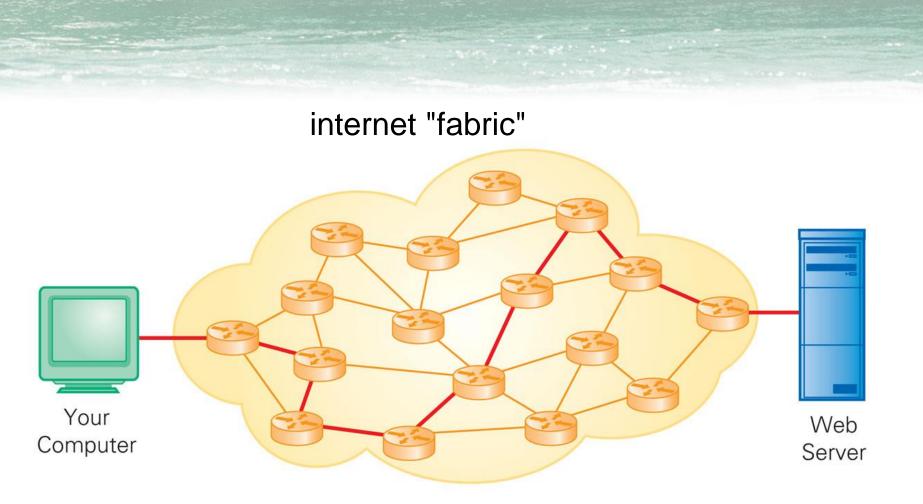


Figure 3.1. A diagram of the Internet.

Far and Near: WAN and LAN

- Internet is a collection of Wide Area Networks (WAN), designed to send information between widely separated locations
- A Local Area Network (LAN) connects computers close enough to be linked by a single cable or wire pair
- A LAN is connected to the Internet through a gateway

Moving Packets: Wires and More

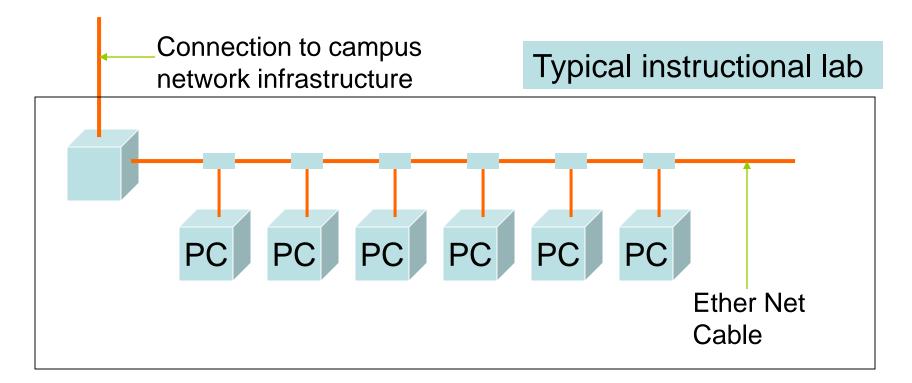
- Information is sent using electrical, electronic, and optical communication technologies
 - Copper telephone lines, dedicated fiber optic lines, microwave links, etc.
- The physical technology used to move the information is independent from the *protocol*
 - transmission of information may use multiple technologies and multiple protocols

Protocol Rules!

- To communicate, computers need to know:
 - how to format the information to be sent
 - how to interpret the information received
 - how to conduct the communication
- The rules for doing this are a *protocol*

Some protocols

- EtherNet
 - for communication over a LAN
- TCP/IP -- Transmission Control Protocol / Internet Protocol
 - for sending packets on the Internet
- HTTP -- HyperText Transfer Protocol
 - for client/server interactions on the Web
- SMTP Simple Mail Transfer Protocol
 for email
- FTP File Transfer Protocol

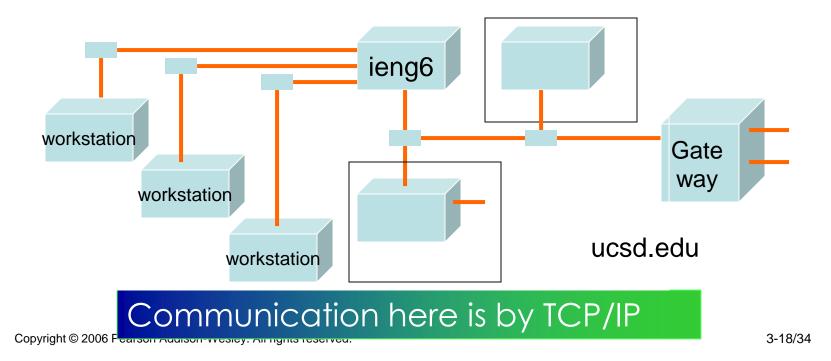

for files

• SSH – Secure Shell

- for secure shell connections and transfer of files 3-15

LAN in the Lab

- EtherNet is a popular LAN protocol
 - It's a "party line" protocol



Ethernet protocol

- Channel (wire, wire pair, or optical fiber) that connects a set of computers
- Each computer is connected to the channel, allowing it to send a signal that can be detected by all computers connected to the channel
- Decentralized scheme: Each computer listens to the channel, and if it's quiet, it's free. The computer transmits unless another starts at the same time. In that case, both stop for a random time and then try again.

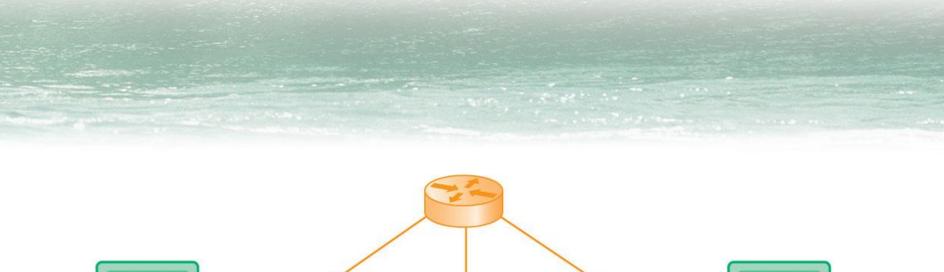
Campus & The World

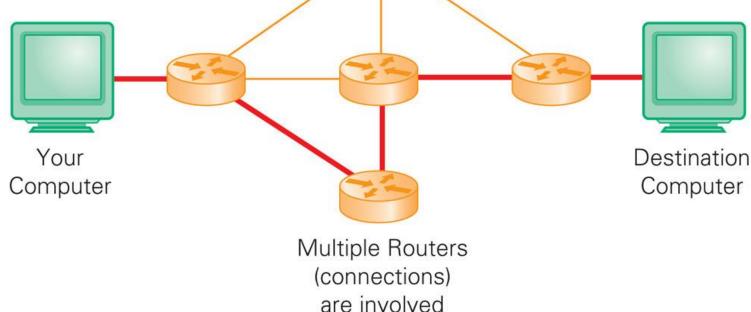
 The campus subnetworks connect computers of the ucsd.edu domain, which connects to Internet via a gateway

Internet protocols

TCP/IP (Transmission Control Protocol/ Internet Protocol)

- Information is broken into a sequence of small fixed-size chunks called *IP packets*
- Each packet has space for the chunk of data, the destination IP address, and a sequence number
- The packets are sent over the Internet one at a time using whatever route is available, passing through different switches, routers, and other computers
- Because each packet can take a different route, congestion and service interruptions do not disrupt transmissions


IP -- Like Using Multiple Postcards


- Using IP is like sending a message on multiple postcards
 - Break message into smaller chunks
 - Construct IP packets: each has destination IP address, sequence number and a message chunk
 - Send packets. Each packet makes its way separately to destination, possibly taking different routes
 - Message is reassembled at destination

Taking separate routes lets packets by-pass congestion and out-of-service switches

Figure 3.7. The TCP/IP postcard analogy.

Figure 3.8. The Internet makes use of whatever routes are available to deliver packets.

A Trip to Switzerland

• A packet sent from UCSD to ETH (Swiss Fed. Tech. University) routed through 26 'hops'!

<u> </u>		D d Trial Version Options Tools Help							
ddres:	s eth.ch	· · · · ·		IP Addresses 129.132.1.15					
			Report	t for et	h.ch [129.1:	32.1.1	5]		
nalysis	: leth.chl.was	found in 26 hops.					-		
									ſ
Нор	%Loss	IP Address	Node Name	Location		Tzone	Ims	Graph	Network
		192.168.1.5	PEETS						171 (private use)
		192.168.1.1	-		ucsd.e	du	nate	wavl	(private use)
		132.239.9.1	cse-rsm-vl434-cse-risk-gw-9-1	1	4004.0	uu	guio	vv ay	Üniversity of California, San Diego
		132.239.255.25	muir-msfc-cse-rsm.ucsd.edu				-	-	University of California, San Diego
		132.239.255.162	nodeb-6509-muir-rsm.ucsd.ed			T	0	H	University of California, San Diego
		132.239.255.142	ucsd-gw-nodeb-6509.ucsd.ed				2	ll-	University of California, San Diego
		137.164.27.57	sdg-hprucsd-ucsd1-ge.cenic				0	1	USC/Information Sciences Institute
		137.164.25.6	lax-hpr1sdg-hpr1-10ge-w.cei	r			3	ll-	USC/Information Sciences Institute
; ;		137.164.25.3	abilene-LAhpr-lax-gsr1-10ge				4	14	USC/Information Sciences Institute
		198.32.8.95	snvang-losang.abilene.ucaid.e	Abilene, T	(, USA		11	1	Exchange Point Blocks NET-EP-1
0		198.32.8.2	dnvrng-snvang.abilene.ucaid.e	Abilene, T	(, USA		30	1 \	Exchange Point Blocks NET-EP-1
1		198.32.8.14	kscyng-dnvrng.abilene.ucaid.e				40		Exchange Point Blocks NET-EP-1
2		198.32.8.80	iplsng-kscyng.abilene.ucaid.e	(Abilene, T)	(, USA		60	1 \	Exchange Point Blocks NET-EP-1
3		198.32.8.76	chinng-ipIsng.abilene.ucaid.ec	Abilene, T	(, USA		63		Exchange Point Blocks NET-EP-1
4		198.32.8.83	nycmng-chinng.abilene.ucaid.	Abilene, T	(, USA		84		Exchange Point Blocks NET-EP-1
5		198.32.11.62	-	PO 12317			79		Exchange Point Blocks NET-EP-1
6		62.40.96.170	ny.uk1.uk.geant.net	-			146		IP allocation for GEANT network
7		62.40.96.89	uk.fr1.fr.geant.net	-			150		🗧 IP allocation for GEANT network
8		62.40.96.29	fr.ch1.ch.geant.net	-			160		IP allocation for GEANT network
9		62.40.103.18	swiCE2-P6-1.switch.ch	(United Kir	igdom)	*	160		IP allocation for GEANT network
0		130.59.36.6	swiCE3-G4-3.switch.ch	(Switzerlar		+01:00	160		RIPE Network Coordination Centre
!1		130.59.36.2	swiZH2-T1-1.switch.ch	(Switzerlar		+01:00	163		RIPE Network Coordination Centre
2		130.59.36.89	swiEZ2-G2-1.switch.ch	(Switzerlar		+01:00	162		RIPE Network Coordination Centre
3		192.33.92.1	rou-rz-gw-giga-to-switch.ethz.c		Switzerland	+01:00	165		Swiss Federal Institute of Technology
4		192.33.92.130	rou-ethz-access-intern.ethz.ch		Switzerland	+01:00	166		Swiss Federal Institute of Technology
		129.132.99.65	rou-rz-mega-transit-1.ethz.ch	(Switzerlar	(b)	+01:00	164		RIPE Network Coordination Centre
5 6		129.132.99.05	eth.ch	(Switzerlar		+01:00	165		RIPE Network Coordination Centre

Check Internet Hops

- To explore more...
 - Find software called Visual Routes (personal evaluation copies are free) at http://www.visualroute.com
 - Download a copy of the software
 - Install software and type in foreign URLs
 - Switzerland eth.ch
 - Australia www.usyd.edu.au
 - Japan kyoto-u.ac.jp
 - South Africa www.uct.ac.za

Naming computers

- Every computer on the internet needs to be identifiable, so packets can be sent to it reliably
- Otherwise the internet wouldn't work!
- There are two ways to do this:
 - numerical IP addresses, used in IP packets
 - textual domain names, used by humans
- The Domain Name System relates the two naming schemes

Naming Computers I

- Computers are named by *domain names* -- a hierarchical scheme that groups related computers
 - .edu The .edu domain: All computers at educational institutions
 - .ucsd.edu The ucsd.edu domain: All computers at ucsd

ieng6.ucsd.edu A particular computer at ucsd

 Domains begin with a "dot" and get "larger" going to the right...

Naming Computers II

 Computers are also named by IP address, four numbers in the range 0-255

ieng6.ucsd.edu: 128.54.70.238

- Remembering IP addresses would be brutal for humans, so humans use domain names
- Computers find the IP address for a domain name from the *Domain Name System* -- an IP addressbook computer

How many different IP addresses are there?... ... is that enough?

Top-level Domains

- A *domain* is a related group of networked computers
- *Top-level* domains appear in the last part of domain name, all the way to the right:
 - .edu educational institutions
 - .com commercial companies
 - .org other organizations
 - .net networks
 - .mil military
 - .gov government agencies

Mnemonic two-letter country designators such as .ca (Canada)

Top-level Domains

- .edu .com .mil .gov .org .net domains are "top level domains", mainly for the US
- Occasionally, new TLD names added
- Each country has a top level domain name: .ca (Canada), .es (Spain), .de (Germany), .au (Australia), .at (Austria), .us (United States)

The FIT book contains the complete list

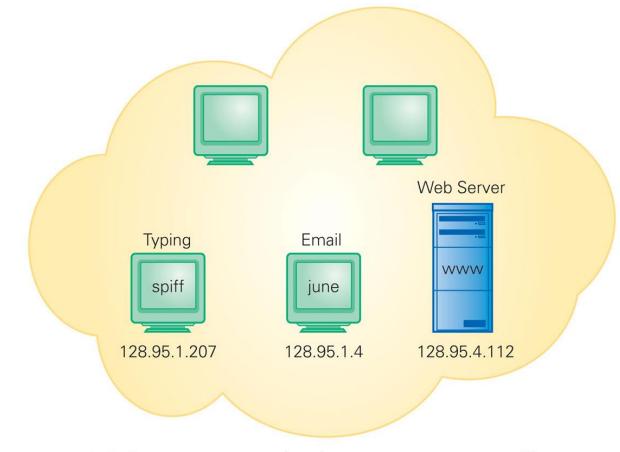


Figure 3.4. Computers connected to the Internet are given IP addresses.

The Medium of the Message

- The Name Game of Computer Addresses
 - *IP addresses:* Each computer connected to the Internet is given a unique numerical address
 - Good for fast processing by machine
 - Domain Names: Human-readable symbolic names, based on domain hierarchy
 - Easier to read and remember and type

DNS Servers

- The *Domain Name System* translates the human-readable names into IP addresses
- A computer connected to the internet must know the IP address of a nearby DNS server, a computer that keeps a list of domain names and corresponding IP addresses
- When you use a domain name to send information, your computer asks the DNS server to look up the IP address
- If the nearby DNS server doesn't know the IP address, it asks a *Root name server*, which keeps the master list of name-to-address relationships

Logical vs Physical

- There are 2 ways to view the Internet
 - Humans see a hierarchy of domains relating computers -- logical network
 - Computers see groups of four number IP addresses -- physical network
 - Both are ideal for the "users" needs
- The Domain Name System (DNS) relates the logical network to the physical network by translating domains to IP addresses

A computer needs to know IP address of a DNS server!

- Networking increases the usefulness of computers, but has social implications
- There are local area and wide area networks (LAN's and WAN's)
- The Internet uses different protocols to exchange different kinds of information
- The Domain Name System (DNS) relates the logical network to the physical network by translating domains to IP addresses