APS Homework 1: Divide-and-Conquer

Problem 1: A Fake among 33 Coins

There are \(n = 33 \) identical-looking coins. 32 of the coins are genuine and all weigh the same, and 1 coin is fake and weighs slightly less than the genuine coins. Given only a two-pan balance scale (Fig. 1) and the 33 coins, which coin is fake?

![Figure 1. A two-pan balance scale.](image)

Problem 1a: What is the minimum number of weighings needed to determine with 100% certainty which of the 33 coins is fake in the worst-case scenario?

Problem 1b: Describe a Divide-and-Conquer algorithm for determining with 100% certainty which of the 33 coins is fake in the minimum number of weighings.

Problem 1c: Generalize the algorithm you provided in Problem 1b to work for any arbitrary number of coins \(n > 0 \).

Problem 1d: Prove that the algorithm you provided in Problem 1c is correct for any \(n > 0 \).

Problem 1e: As a function of \(n \), what is the minimum number of weighings needed to determine with 100% certainty which of the \(n \) coins is fake in the worst-case scenario?

Problem 2: Binary Search

You are given a list `ints` containing \(n = |\text{ints}| = 8 \) integers in ascending order (i.e., 8 integers ordered from smallest to largest). Given an arbitrary integer \(x \), does `ints` contain \(x \)? Define a “comparison” to be a procedure that, given 2 integers \(a \) and \(b \), tells you if \(a > b \), \(a < b \), or \(a = b \).
Problem 2a: What is the minimum number of comparisons needed to determine with 100% certainty if \(\text{ints} \) contains \(x \) in the worst-case scenario?

Problem 2b: Describe a Divide-and-Conquer algorithm for determining with 100% certainty if \(\text{ints} \) contains \(x \).

Problem 2c: Generalize the algorithm you provided in Problem 2b to work for any sorted list of any arbitrary size \(n > 0 \).

Problem 2d: Prove that the algorithm you provided in Problem 2c is correct for any \(n > 0 \).

Problem 2e: As a function of \(n \), what is the minimum number of comparisons needed to determine with 100% certainty if an arbitrary sorted list of integers contains \(x \) in the worst-case scenario?