Problem 1: Efficient Power Function

Let \(\text{power}(a, b) \) denote the power function \(a^b \). For example, \(\text{power}(5, 3) = 5^3 = 125 \). A trivial algorithm to implement \(\text{power}(a, b) \) is the following:

```python
Algorithm \text{power}(a, b):
    result ← 1
    Repeat \( b \) times:
        result ← result \times a
    Return result
```

Note, however, that we will always have to perform exactly \(b \) multiplication operations. Can we compute \(\text{power}(a, b) \) using fewer than \(b \) multiplication operations?

Problem 1a: Describe a Divide-and-Conquer algorithm for computing \(\text{power}(a, b) \) using the fewest number of multiplication operations possible. You may assume that \(b \) is an integer.

Problem 1b: Prove that the algorithm you provided in Problem 1a is correct for any number \(a \) and for any integer \(b \).

Problem 1c: As a function of \(a \) and/or \(b \), what is the minimum number of multiplication operations needed to compute \(\text{power}(a, b) \)?

Problem 2: Counting the Number of 0s in a Sorted Binary List

A “binary list” is a list containing only 0s and 1s. For example, \([0, 1, 0, 0, 1]\) is a binary list. A “sorted binary list” (in ascending order for this problem) is a binary list such that no 1s are ever followed by 0s. For example, \([0, 0, 0, 1, 1]\) is a sorted binary list. Given a sorted binary list containing \(n \) elements, we can determine the number of 0s as follows:

```python
Algorithm \text{count_0s(nums)}:
    For \( i \) from 0 to \( |\text{nums}| - 1 \):  # using 0-based indexing
        If \( \text{nums}[i] \) is 1:
            Return \( i + 1 \)
    Return \( |\text{nums}| \)
```
However, for a list containing \(n \) elements, this simple algorithm requires us to look at all \(n \) elements in the worst-case scenario (all elements are 0s), which can become slow as \(n \) becomes large. Can we compute the number of 0s in a sorted binary list by looking at fewer than \(n \) elements?

Problem 2a: Describe a Divide-and-Conquer algorithm for determining the number of 0s in a sorted binary list by looking at the fewest number of elements possible.

Problem 2b: Prove that the algorithm you provided in Problem 2a is correct for any arbitrary sorted binary list containing \(n > 0 \) elements.

Problem 2c: As a function of \(n \), what is the minimum number of elements needed to be looked at to determine the number of 0s in a sorted binary list of length \(n \)?

Problem 3: Tower of Hanoi

“Tower of Hanoi” is a game in which you have 3 pegs (call them left, middle, and right) and a tower of different-sized rings on left (Fig. 1). The rings are stacked such that, from bottom-to-top, they go from largest-to-smallest.

![Figure 1. The “Tower of Hanoi” game.](image)

The goal of the game is to move the entire tower from left to right, but with the following constraints: (1) you must move a single ring from one peg to another in any given move, and (2) you cannot place a ring on top of another ring smaller than itself (but you can place a ring on top of another ring larger than itself). In addition to simply moving the tower from left to right, you also want to try to minimize the number of moves.

Problem 3a: What is a solution for winning the “Tower of Hanoi” game given a tower containing \(n = 3 \) rings? What about \(n = 4 \) rings?
Problem 3b: What is the minimum number of moves needed to win the “Tower of Hanoi” game given a tower containing $n = 3$ rings? What about $n = 4$ rings?

Problem 3c: Describe a Divide-and-Conquer algorithm for winning the “Tower of Hanoi” game given a tower containing $n > 0$ rings.

Problem 3d: Prove that the algorithm you provided in Problem 3c is correct for any arbitrary $n > 0$.

Problem 3e: As a function of n, what is the minimum number of moves needed to win the “Tower of Hanoi” game given a tower containing $n > 0$ rings?